

New powertrain architecture for radically reduced electric vehicle energy demand

Aljaž Dvoršak account manager

THE DANUBE REGION TRANSPORT DAYS 2022: "Towards energy efficient, sustainable transport"

Elaphe in a nutshell

Research work 1980s Established 2006 Full system including multiple wheel control

Validated on benches and in 100+ vehicles

First customer launches: 2 models – Q4 2022 1 model – Q2 2023

150 dedicated employees

Global presence

Innovative patented solutions

In-wheel motor

Trends

EV market segmentation

McKinsey & Company

EV market differentiation – vehicle mission

Track capable sportscar

High straight line acceleration

Substantial daily range without charging

Long range cruising

Second family vehicle for city use

Personal mobility

Versatile family vehicle

Eco-friendly truck

Vehicle features

Emerging ultra-efficient vehicle class

Vehicle benefits

Low air drag coefficient < 0.2

Lightweight structures

Low rolling resistance tires

Holistic optimization of internal losses on all vehicle systems

1000 km per charge feasible without major cost

50% lower energy consumption than state-of-the-art

Useful autonomy without charging possible (solar)

Very fast range replenishing

Lower dependence on external conditions

Our products

In-wheel motor propulsion system

Our value

Vehicle architecture benefits

Powertrain benefits

Vehicle benefits

End user benefits

OEM benefits

- Minimal footprint
- No gearbox, no half-shafts
- Direct drive no mechanical losses
- Standard brake, bearing knuckle and rim compatibility

- Weight reduction
- Extended range
- Improved vehicle dynamics and manoeuvring & safety
- Released space for a larger battery
- Aerodynamic design

- Increased space in same vehicle volume
- Increased trunk/frunk
- Software defined vehicle & autonomous ready
- User-centred design & functionalities

- Accelerated time to market
- Less parts & less complexity
- Economies of scale through modularity across platforms and design versatility
- Standard parts-compatible

Propulsion efficiency on vehicle level

- Focus on air-drag:
 - Reduction of Cd
 - Reduction of frontal area
- Focus on rolling resistance
 - Improved tires
 - Rim size, shape and form factor
 - Reduced vehicle mass
- Maximizing regeneration availability
- Improved thermal management
 - Less sensitivity to temperature
 - More efficient cooling of components
- Improvement of losses of each internal component

Role of PT in energy consumption

Generic case representative, generic vehicle with 55 Wh/km vehicle losses in WLTP cycle and a 50 kWh battery.

Vehicle center efficiency:
$$\eta_{cyc} = \frac{Wheel^+ - Wheel^-}{DC^{IN} - DC^{OUT}}$$

If PT 80% efficient
$$\eta_{cyc} = \frac{\int P_{loss,veh} dt}{\int P_{loss,veh} dt + \int P_{loss,PT} dt} \cong 65\%$$
 590 km range

If PT 90% efficient
$$\eta_{cyc} = \frac{\int P_{loss,veh} dt}{\int P_{loss,veh} dt + \int P_{loss,PT} dt} \approx 80 \%$$
 715 km range (+21%)

This simple case clearly shows that the difference in the outcome can be higher than proportional to the efficiency improvement.

PT losses comparison

IWM

Contributions to losses:

- Joule losses in the e-motor
- Frequency losses in the e-motor
- Seal losses
- Inverter losses
- Cable losses
- Vehicle bearing losses *

E-axle

Contributions to losses:

- Joule losses in the e-motor
- Frequency losses in the e-motor
- Inverter losses
- Cable losses
- Gear losses incl. bearings and seals *
- Driveshaft losses, differential losses *
- Joint losses *
- Vehicle bearing losses *

Ref: Bosch mobility solutions

Serial production vehicles

Lordstown Endurance

World's first SUV with an in-wheel powertrain

Mission

A reliable fleet vehicle for businesses with a focus on reducing maintenance costs

Highlights

- 4x in-wheel motor, combined peak power of 550 HP and 6700
 Nm of torque
- 200 miles range with 109 kwh battery
- large frunk (front trunk)

Serial production vehicles

World's first ultra-efficient solar 3-wheeler

Mission

Highly efficient solar ultra light EV

Highlights

- Solar cells embedded into composite body
- up to 41 miles of solar range on a typical sunny day in California
- Impecable aerodynamics, air drag coefficient of 0,13
- 3x in wheel motor, combiend power 150 kw
- Daily commuter or sport utility vehicle

Serial production vehicles

Worlds most efficient full-size sedan EV

Mission

Full-size 5-seater solar vehicle with over 1000 km range

Key features

- Aerodynamic design, airdrag Cd < 0,19
- 625 km WLTP battery range with 60 kWh battery
- 70 km of solar range on a sunny day
- Over 1000 km of practical range due to solar charging with 50km daily commute drives
- 4x custom in-wheel motor with achieved 97% efficiency
- 91% WLTP powertrain efficiency

*

Put the power where it's needed.

